1176-14-199 Mariela Carvacho, Jen Paulhus* (paulhus@math.grinnell.edu), Tom Tucker and Aaron Wootton. Groups which act with almost all signatures.

Riemann's Existence Theorem tells us that a group G containing elements of order m_1, \ldots, m_r acts on a Riemann surface with quotient genus h if (1) the Riemann-Hurwitz formula is satisfied and (2) there are 2h + r elements $a_1, b_1, \ldots, a_h, b_h, g_1, \ldots, g_r \in G$ which generate the group, the g_i are of order m_i , respectively, and $\prod_{i=1}^h [a_i, b_i] \prod_{j=1}^r g_i = 1_G$. We call numbers h, m_1, \ldots, m_r which satisfy (1) potential signatures and those that satisfy both (1) and (2) actual signatures. It is typically straightforward to determine if (1) is satisfied given a specific group G and list of orders of elements in G. However, determining (2) is much more difficult. We present several classification results of groups where all but a finite number of potential signatures are in fact actual signatures. (Received January 23, 2022)