1176-14-156 Aaron Wootton* (wootton@up.edu), 5000 N Willamette Blvd, Portland, OR 97203. Cyclic surfaces with multiple defining equations.

A compact Riemann surface S is said to be cyclic n-gonal if it has a defining equation of the form $y^n = q(x)$ for some polynomial q(x), or equivalently, if it admits a conformal automorphism τ of order n such that the quotient space $S/\langle \tau \rangle$ has genus 0. For a given n-gonal surface S, one natural question to ask is whether the morphism τ is unique. That is, does there exists a conformal automorphism λ of S of order m (not necessarily equal to n) with $\lambda \notin \langle \tau \rangle$ and $S/\langle \lambda \rangle$ of genus 0? Such a surface would then admit an equation of the form $y^m = r(x)$ which might be significantly different to the equation $y^n = q(x)$. In this talk we shall discuss the classification of all such surfaces under the assumption that n and m are prime numbers. We shall also consider why the problem becomes much harder when for non-primes. (Received January 20, 2022)