1176-05-55 Joseph Briggs, Michael Gene Dobbins and Seunghun Lee* (shlee@binghamton.edu).
Transversals and colorings of simplicial spheres.
Motivated from the surrounding property of a point set in \mathbb{R}^{d} introduced by Holmsen, Pach and Tverberg, we consider the transversal number and chromatic number of a simplicial sphere. As an attempt to give a lower bound for the maximum transversal ratio of simplicial d-spheres, we provide two infinite constructions. The first construction gives infinitely many $(d+1)$-dimensional simplicial polytopes with the transversal ratio exactly $\frac{2}{d+2}$ for every $d \geq 2$. In the case of $d=2$, this meets the previously well-known upper bound $1 / 2$ tightly. The second gives infinitely many simplicial 3 -spheres with the transversal ratio greater than $1 / 2$. This was unexpected from what was previously known about the surrounding property. Moreover, we show that, for $d \geq 3$, the facet hypergraph $\mathcal{F}(\mathbf{P})$ of a $(d+1)$-dimensional simplicial polytope \mathbf{P} has the chromatic number $\chi(\mathcal{F}(\mathbf{P})) \in O\left(n^{\frac{[d / 2]-1}{d}}\right)$, where n is the number of vertices of \mathbf{P}. This slightly improves the upper bound previously obtained by Heise, Panagiotou, Pikhurko, and Taraz. (Received January 11, 2022)

