Ted Dobson* (ted.dobson@upr.si). Classifying vertex-transitive digraphs of order a product of three distinct prime numbers with a solvable group of automorphisms. Preliminary report.
Classifications of vertex-transitive graphs with various properties are common in the literature. The property we consider is the number of vertices. Such classifications usually give a minimal transitive subgroup of the automorphism group of the graph, and have only been accomplished, by a variety of authors, when the number n of vertices is $p, p^{2}, p^{3}, p q$, and some values of $p q r$, where p, q, and r are distinct primes. For $n=p q r$, graphs whose automorphism group are almost simple groups have also been determined, again by a variety of authors. We focus on those graphs that have a transitive solvable subgroup (and mention that there are automorphism groups that are neither almost simple nor contain a transitive solvable subgroup). There are characterizations of the minimal transitive subgroups of some vertex-transitive graphs of order $p q r$ with a transitive solvable subgroup of automorphisms, for p, q, and r satisfying certain arithmetic conditions. We show that the known families of minimal transitive subgroups of vertex-transitive graphs of order pqr, are the only minimal transitive subgroups of vertex-transitive graphs of order pqr with a transitive solvable subgroup of automorphisms, for all values of p, q, and r. (Received January 25, 2022)

