1166-05-126 Akshat Mudgal* (amudgal@purdue.edu). Additive energies on spheres.
Given a real number $\lambda>0$, we study additive energies on the sphere

$$
S_{\lambda}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=\lambda\right\}
$$

In particular, letting $s \geq 2$ be some natural number and letting A be some finite, non-empty subset of S_{λ}, we are interested in studying the number of solutions to the equation

$$
\mathbf{x}_{1}+\cdots+\mathbf{x}_{s}=\mathbf{x}_{s+1}+\cdots+\mathbf{x}_{2 s}
$$

such that $\mathbf{x}_{1}, \ldots, \mathbf{x}_{2 s} \in A$. This problem is connected to discrete restriction estimates for the sphere in 3 dimensions, and our results improve upon previous work of Bourgain-Demeter and Benatar-Maffucci. (Received February 15, 2021)

