Hoger Ghahramani and Wu Jing* (wjing@uncfsu.edu). Lie centralizers at zero products on a class of operator algebras.

Let \mathcal{A} be an algebra. In this talk we will discuss the problem of determining a linear map ψ on \mathcal{A} satisfying $a, b \in \mathcal{A}$, $ab = 0 \Longrightarrow \psi([a, b]) = [\psi(a), b]$ or $ab = 0 \Longrightarrow \psi([a, b]) = [a, \psi(b)]$ (C2). We first compare linear maps satisfying (C1) or (C2), commuting linear maps, and Lie centralizers with a variety of examples. In fact, we see that linear maps satisfying (C1), (C2) and commuting linear maps are different classes of each other. Then we introduce a class of operator algebras on Banach spaces such that if \mathcal{A} is in this class, then any linear map on \mathcal{A} satisfying (C1) (or (C2)) is a commuting linear map. As an application of these results we characterize Lie centralizers and linear maps satisfying (C1) (or (C2)) on nest algebras. (Received February 26, 2021)