We study the minimum total weight of a disk triangulation using vertices out of $\{1, \ldots, n\}$, where the boundary is labeled (123) and the $\binom{n}{3}$ triangles have independent rate-1 exponential weights.

We show that, with high probability, the minimum weight is $\left.\left(c_{1}+o(1)\right)\right] \log n / \sqrt{n}$ for an explicit constant c_{1}, and that it is attained by a triangulation that consists of $(1 / 4+o(1)) \log n$ vertices with distinct labels.

In addition, we prove that, with high probability, the minimum weights of a homological filling and a homotopical filling of the cycle (123) are both attained by the minimum weight disk triangulation. (Received August 18, 2020)

