Benjamin L Jeffers* (bjeffers@trinity.edu), 8121 SW 47th ave, Portland, OR 97219, and Jeffery W Lyons. On the solutions of the variational equation for an $n^{\text {th }}$ order boundary value problem with an integral boundary condition.
In this paper, we discuss differentiation of solutions for the boundary value problem $y^{(n)}=$ $f\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right), a<x<b, y^{(i)}\left(x_{j}\right)=y_{i j}, 0 \leq i \leq m_{j}, 1 \leq j \leq k-1$, and $y^{(i)}\left(x_{k}\right)+\int_{c}^{d} p y(x) d x=$ $y_{i k}, 0 \leq i \leq m_{k}$ with respect to the boundary data. We show that under certain conditions partial derivatives of the solution $y(x)$ of the boundary value problem with respect to various boundary condition parameters exist and solve the associated variational equation along $y(x)$. (Received August 04, 2020)

