Paul W. Eloe and Jeffrey T. Neugebauer*, jeffrey.neugebauer@eku.edu. Smallest Eigenvalues for Boundary Value Problems of Two Term Fractional Differential Operators Depending on Fractional Boundary Conditions.
Let $n \geq 2$ be an integer. Let $n-1<\alpha \leq n$. We consider eigenvalue problems for two point $n-1,1$ boundary value problems of the form

$$
\begin{array}{cl}
D_{0^{+}}^{\alpha} u+a(t) u+\lambda p(t) u=0, & 0<t<1, \\
u^{(i)}(0)=0, i=0,1, \ldots, n-2, & D_{0^{+}}^{\beta} u(1)=0,
\end{array}
$$

where $0 \leq \beta \leq n-1$ and D_{0+}^{α} denotes the standard Riemann-Liouville differential operator. We prove the existence of smallest positive eigenvalues and then obtain comparisons of these smallest eigenvalues as functions of p and of β. (Received August 18, 2020)

