1161-13-243 J. R. Juett and Lois W. Ndungu* (lwn8@txstate.edu). Krull rings, regular π -rings, and generalizations. Preliminary report.

Let \star be a star operation on a commutative ring R. (We will review star operations and other relevant definitions.) We define R to be a regular \star - π -ring if every regular proper principal ideal is a \star -product of prime \star -ideals. We find this notion to hold interest because it simultaneously encapsulates two important generalizations of factoriality. That is, if R is an integral domain and $\star = d$ (resp., $\star = t$), then R is a regular \star - π -ring if and only if it is a π -domain (resp., Krull domain). Many characterizations of π -domains and Krull domains can be found in the literature, showcasing a rich interplay between the notions of (t-)products of prime (t-)ideals, (t-)invertibility, and various ideal arithmetic properties. In this talk we give several characterizations of regular \star - π -rings (in the case where \star has finite character), simultaneously generalizing much of the known theory of π -domains and Krull domains under a unified framework, as well as obtaining a few results that are new even in these special cases. (Received August 17, 2020)