Daniel Panario* (daniel@math.carleton.ca). Construction of Irreducible Polynomials through Rational Transformations.
Let \mathbb{F}_{q} be the finite field with q elements, where q is a power of a prime. We discuss recursive methods for constructing irreducible polynomials over \mathbb{F}_{q} of high degree using rational transformations. In particular, given a divisor $D>2$ of $q+1$ and an irreducible polynomial $f \in \mathbb{F}_{q}[x]$ of degree n such that n is even or $D \not \equiv 2(\bmod 4)$, we show how to obtain from f a sequence $\left\{f_{i}\right\}_{i \geq 0}$ of irreducible polynomials over \mathbb{F}_{q} with $\operatorname{deg}\left(f_{i}\right)=n \cdot D^{i}$. (Received August 04, 2020)

