recurrence of the partition function and other recursive formulas for partition-based functions. Euler introduced the recursive formula for the partition function, $p(n)$:

$$
p(n)=p(n-1)+p(n-2)-p(n-5)-p(n-7)+\cdots
$$

In this talk, we will prove a generalization of this recurrence: we will give a family of functions $h_{r, l}(n)$ defined on a subset N of \mathbb{N}, where $h_{r, l}(n)=p(n)$ in N, and then investigate what occurs as $l \rightarrow \infty$. Also using generating functions, similar to Euler's recurrence, other recurrence can be produced for other partition-based functions, for example, a recursive formula for the number of partition with distinct parts. (Received August 18, 2020)

