1161-05-196Alexander Riasanovsky* (awnr@iastate.edu) and Ryan Martin (rymartin@iastate.edu).On the edit distance function of the random graph.

Given a hereditary property of graphs \mathcal{H} and a $p \in [0, 1]$, the edit distance function $\mathrm{ed}_{\mathcal{H}}(p)$ is asymptotically the maximum proportion of edge-additions plus edge-deletions applied to a graph of edge density p sufficient to ensure that the resulting graph satisfies \mathcal{H} . The edit distance function is directly related to other well-studied quantities such as the speed function for \mathcal{H} and the \mathcal{H} -chromatic number of a random graph.

Let \mathcal{H} be the property of forbidding an Erdős-Rényi random graph $F \sim \mathbb{G}(n_0, p_0)$, and let φ represent the golden ratio. In this paper, we show that if $p_0 \in [1 - 1/\varphi, 1/\varphi]$, then a.a.s. as $n_0 \to \infty$,

$$\operatorname{ed}_{\mathcal{H}}(p) = (1+o(1)) \frac{2\log n_0}{n_0} \cdot \min\left\{\frac{p}{-\log(1-p_0)}, \frac{1-p}{-\log p_0}\right\}.$$

Moreover, this holds for $p \in [1/3, 2/3]$ for any $p_0 \in (0, 1)$. (Received August 17, 2020)