1161-05-167Hongqiu Chen* (hchen1@memphis.edu), Department of Mathematical Sci, 365 Dunn Hall,
University of Memphis, Memphis, TN 38152, and Jerry Bona and Colette Guillope. Further
Theory for a Higher-order Water Wave Model. Preliminary report.

A class of higher-order models for unidirectional water wave of the form

$$\eta_t + \eta_x - \gamma_1 \beta \eta_{xxt} + \gamma_2 \beta \eta_{xxx} + \delta_1 \beta^2 \eta_{xxxxt} + \delta_2 \beta^2 \eta_{xxxxx} + \frac{3}{4} \alpha(\eta^2)_x + \alpha \beta \left(\gamma(\eta^2)_{xx} - \frac{7}{48} \eta_x^2 \right)_x - \frac{1}{8} \alpha^2(\eta^3)_x = 0$$

was derived by Bona, Carvajal, Panthee and Scialom. With appropriate choices of $\gamma_1, \gamma_2, \delta_1, \delta_2$ and γ , this equation serves as a model for the propagation of small-amplitude, long-crested surface waves moving to the direction of increasing values of the spatial variable x. Where $\eta = \eta(x, t)$ is a real-valued function of $x \in (-\infty, \infty), t \ge 0$ representing the deviation of the free surface from its undisturbed position at the point corresponding to x at time t. Moreover, γ_1 and γ_2 are restricted by $\gamma_1 + \gamma_2 = \frac{1}{6}$. The new result is that when $\gamma = \frac{7}{48}, \delta_2 > \delta_1 > 0$ and the initial data

$$\eta(x,0) = \eta_0(x,0)$$

lies in H^1 and not too big, then the initial-value problem is globally well posed and the H^1 -norm of the solution is uniformly bounded for $t \ge 0$. (Received August 16, 2020)