1161-05-155 Yan Cao, Guantao Chen and Guangming Jing* (gjing@augusta.edu), 2500 Walton Way, Augusta, GA 30904. A note on Goldberg's conjecture of total chromatic numbers.
Let $G=(V(G), E(G))$ be a multigraph with maximum degree $\Delta(G)$, chromatic index $\chi^{\prime}(G)$ and total chromatic number $\chi^{\prime \prime}(G)$. The Total Coloring conjecture proposed by Behzad and Vizing, independently, states that $\chi^{\prime \prime}(G) \leq \Delta(G)+\mu(G)+1$ for a multigraph G, where $\mu(G)$ is the multiplicity of G. Moreover, Goldberg conjectured that $\chi^{\prime \prime}(G)=\chi^{\prime}(G)$ if $\chi^{\prime}(G) \geq$ $\Delta(G)+3$ and noticed the conjecture holds when G is an edge-chromatic critical graph. In this note we show that $\chi^{\prime \prime}(G)=\chi^{\prime}(G)$ if $\chi^{\prime}(G) \geq \max \{\Delta(G)+2,|V(G)|+1\}$. Consequently, $\chi^{\prime \prime}(G)=\chi^{\prime}(G)$ if $\chi^{\prime}(G) \geq \Delta(G)+2$ and G has a spanning edge-chromatic critical subgraph. (Received August 15, 2020)

