Let π be a permutation of the set $[n]=\{1,2, \ldots, n\}$. Two disjoint order-isomorphic subsequences of π are called twins. How long twins are contained in every permutation? The well known Erdős-Szekeres theorem implies that there is always a pair of twins of length $\Omega(\sqrt{n})$. On the other hand, by a simple probabilistic argument Gawron proved that for every $n \geqslant 1$ there exist permutations with no twins of length greater than $O\left(n^{2 / 3}\right)$. His conjecture states that the latter bound is the correct size of the longest twins guaranteed in every permutation. In this talk we show that asymptotically almost surely a random permutation contains twins of length at least $\Omega\left(n^{2 / 3}\right)$, which supports this conjecture. (This was also proved recently by Bukh and Rudenko.) We also discuss several variants of the problem with diverse restrictions imposed on the twins.

This is a joint work with Jarosław Grytczuk and Andrzej Ruciński. (Received August 14, 2020)

