1158-46-119 **Igor V. Nikolaev*** (igor.v.nikolaev@gmail.com). Arithmetic complexity of noncommutative tori. Preliminary report.

The noncommutative torus \mathcal{A}_{θ} is a C^* -algebra generated by two unitary operators U and V satisfying the relation $VU = e^{2\pi I\theta}UV$ for a real constant θ . We study a special case of the algebras \mathcal{A}_{θ} when θ is the irrational root of a quadratic polynomial with integer coefficients. It is well known, that in this case θ unfolds into an infinite periodic continued fraction. With the help of this fraction we introduce an integer number $c(\mathcal{A}_{\theta})$ called an arithmetic complexity of the noncommutative torus. It is shown, that the $c(\mathcal{A}_{\theta})$ is linked to the ranks r of elliptic curves \mathcal{E} by a simple formula $r(\mathcal{E}) = c(\mathcal{A}_{\theta}) - 1$. Reference: arXiv:2002.10854 (Received February 26, 2020)