Rikard Bøgvad, Innocent Ndikubwayo* (innocent@math.su.se) and Boris Shapiro.

 Generalizing Tran's Conjecture.In 2014, Khang Tran conjectured that, for an arbitrary pair of polynomials $A(z)$ and $B(z)$, if $z_{0} \in \mathbb{C} \backslash\{$ zeros of $A(z)\}$ is a zero of some polynomial in the sequence $\left\{P_{n}(z)\right\}_{n=1}^{\infty}$ generated by the three-term recurrence relation of length k

$$
P_{n}(z)+B(z) P_{n-1}(z)+A(z) P_{n-k}(z)=0
$$

with standard initial conditions $P_{0}(z)=1, P_{-1}(z)=\cdots=P_{-k+1}(z)=0$, then z_{0} lies on the real algebraic curve $\mathcal{C} \subset \mathbb{C}$ given by

$$
\Im\left(\frac{B^{k}(z)}{A(z)}\right)=0 \quad \text { and } \quad 0 \leq(-1)^{k} \Re\left(\frac{B^{k}(z)}{A(z)}\right) \leq \frac{k^{k}}{(k-1)^{k-1}}
$$

In this talk, I will generalize Tran's Conjecture and prove existence of such a real algebraic curve. This is based on a joint work with R. Bøgvad and B. Shapiro. (Received February 29, 2020)

