1158-16-243 **Peter Goetz*** (peter.goetz@humboldt.edu). 1-generation of section rings associated to certain inverse systems of projective schemes. Preliminary report.

In seminal work Artin, Tate and Van den Bergh introduced the following fundamental construction. Let \mathbb{K} be a field. Suppose that $\{Z_d \subset (\mathbb{P}^n)^{\times d}\}_{d \ge 1}$ is a family of closed subschemes such that

$$\pi_{1,d-1}(Z_d) \subset Z_{d-1}$$
 and $\pi_{2,d}(Z_d) \subset Z_{d-1}$ for all d ,

where the $\pi_{i,j}$ are the obvious projection maps. Let \mathcal{L}_d be the restriction of the invertible sheaf $\mathcal{O}(1, 1, \ldots, 1)$ on $(\mathbb{P}^n)^{\times d}$ to Z_d . Define $B_0 = \mathbb{K}$ and $B_d = H^0(Z_d, \mathcal{L}_d)$ for $d \geq 1$. Then one can define a canonical multiplication map $B_i \otimes B_j \to B_{i+j}$ so that $B = \bigoplus B_d$ becomes a connected N-graded K-algebra.

We call B the section ring associated to the family $\{Z_d\}$. In this talk I will discuss a new theorem that gives several conditions that ensure that B is generated as a K-algebra by B_1 . If Z_d is the scheme of truncated point modules of length d + 1 associated to an Artin-Schelter regular algebra of dimension 3, then B is isomorphic to a twisted homogeneous coordinate ring and we recover the theorem that B is 1-generated. (Received March 02, 2020)