Luchezar L. Avramov and Nicholas R. Packauskas*

(nicholas.packauskas@cortland.edu), 81 Maple Avenue, Cortland, NY 13045, and Nicholas R Packauskas. Quasi-Polynomial Growth of Betti Sequences.
Let Q be a regular local ring and I an ideal generated by a regular sequence of c elements in the square of the maximal ideal. It is known that over the complete intersection $R=Q / I$ that any finitely generated module M has Betti numbers eventually given by quasi-polynomial of degree less than c. That is, there are integer-valued polynomial functions p_{+}^{M} and p_{-}^{M} with the same leading term such that $\beta_{2 i}^{R}(M)=p_{+}^{M}(2 i)$ and $\beta_{2 i+1}^{R}(M)=p_{-}^{M}(2 i+1)$ for i sufficiently large. We will show that if q is the height of the ideal generated by the quadratic initial forms of I in the associated graded ring of Q, then the degree of $p_{+}^{M}-p_{-}^{M}$ is less than $c-q-1$. (Received March 02, 2020)

