1146-60-361

Sunday A. Asogwa, GA, Jebessa B. Mijena* (jebessa.mijena@gcsu.edu), 231 W. Hancock St., CBX 17, Milledgeville, GA 31061, and Erkan Nane. Blow-up results for space-time fractional stochastic partial differential equations.

We consider non-linear time-fractional stochastic reaction-diffusion equations of the following type,

$$\partial_t^{\beta} u_t(x) = -\nu(-\Delta)^{\alpha/2} u_t(x) + I^{1-\beta} [b(u) + \sigma(u) \stackrel{\cdot}{F} (t, x)]$$

in (d+1) dimensions, where $\nu > 0$, $\beta \in (0,1)$, $\alpha \in (0,2]$, the operator ∂_t^{β} is the Caputo fractional derivative, $-(-\Delta)^{\alpha/2}$ is the generator of an isotropic α -stable Lévy process and $I^{1-\beta}$ is the Riesz fractional integral operator. The forcing noise denoted by $\dot{F}(t,x)$ is a Gaussian noise. Such models might be used as a model for materials with random thermal memory. We derive non-existence (blow-up) of global random field solutions under some additional conditions, most notably on b, σ and the initial condition. (Received January 27, 2019)