1146-11-485 Gaston A. Brouwer, Jonathan Joe and Matt Noble* (matthew.noble@mga.edu). Odd Vector Cycles in $\mathbb{Z}^{m}$.
For positive integers $m, n$, and $r$ with $n$ odd, define an odd vector cycle as $v_{1}, \ldots, v_{n} \in \mathbb{Z}^{m}$, each of magnitude $\sqrt{r}$, that together sum to the zero vector. Denote by $C_{m}(r)$ the minimum $n$ where such a collection of vectors exists. In this talk, we will detail our efforts to determine $C_{m}(r)$ for all possible assignments of $m, r$. Along the way, we will briefly touch upon binary quadratic forms, Euclidean distance graphs, algorithmic search results, and who knows what else. In closing, we will relate a number of (to the best of our knowledge) open questions that have arisen during the work. (Received January 28, 2019)

