1146-05-85 Hemanshu Kaul* (kaul@iit.edu), Deparment of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616. The gap between the list-chromatic and chromatic numbers.
A classic result on the gap between the list chromatic number and the chromatic number tells us $\chi_{\ell}\left(K_{a, b}\right)=1+a$ if and only if $b \geq a^{a}$; the values of b for which $\chi_{\ell}\left(K_{a, b}\right)$ is as large as possible and far from $\chi\left(K_{a, b}\right)=2$. In this talk, we will describe when $\chi_{\ell}\left(G \square K_{a, b}\right)$ is far from $\chi\left(G \square K_{a, b}\right)=\max \{\chi(G), 2\}$. Starting with any chromatic-choosable G, and taking its Cartesian product with a sequence of appropriate $K_{a, b}$, we can construct a sequence of graphs that at each step get one farther from being chromatic-choosable. It is easy to show $\chi_{\ell}\left(G \square K_{a, b}\right) \leq \chi_{\ell}(G)+a$. In 2006, Borowiecki et al. showed that this bound is attainable if b is sufficiently large.

Given any graph G, we wish to determine the smallest b such that $\chi_{\ell}\left(G \square K_{a, b}\right)=\chi_{\ell}(G)+a$. We show that the list color function, a list analogue of the chromatic polynomial, provides the right concept and tool for making progress on this problem. Using the list color function, we prove a sharp general improvement on the 2006 bound, and we compute the smallest such b exactly for families of critical chromatic-choosable graphs. This is joint work with Jeffrey Mudrock. (Received January 09, 2019)

