1146-05-63 Linda Eroh, Cong X. Kang and Eunjeong Yi* (yie@tamug.edu). The connected metric dimension at a vertex of a graph.
The metric dimension is a well-studied notion in graph theory. We begin a local analysis of this notion by introducing the connected metric dimension of G at a vertex v : a set of vertices S of a graph G is a resolving set if, for any pair of distinct vertices x and y of G, there is a vertex $z \in S$ such that the distance between z and x is distinct from the distance between z and y in G. We say that a resolving set S is connected if S induces a connected subgraph of G. The connected metric dimension of G at a vertex v, denoted by $\operatorname{cdim}_{G}(v)$, is the minimum of the cardinalities of all connected resolving sets of G which contain the vertex v. The connected metric dimension of G, denoted by $\operatorname{cdim}(G)$, is $\min \left\{\operatorname{cdim}_{G}(v): v \in V(G)\right\}$. In this talk, we will consider, among others, the following aspects of the connected metric dimension: 1) the existence of a pair (G, v) such that $\operatorname{cdim}_{G}(v)$ takes all positive integer values from $\operatorname{dim}(G)$ to $|V(G)|-1$, as v varies in a fixed graph $G ; 2$) the characterization of graphs G and their vertices v satisfying $\left.\operatorname{cdim}_{G}(v) \in\{1,|V(G)|-1\} ; 3\right)$ the planarity implication of the condition $\operatorname{cdim}(G)=2$. (Received January 06, 2019)

