1146-05-392 Mark Ellingham* (mark.ellingham@vanderbilt.edu), Pouria Salehi Nowbandegani and Songling Shan. Toughness and prism-hamiltonicity of P₄-free graphs.

The prism over a graph G is the product $G \square K_2$, i.e., the graph obtained by taking two copies of G and adding a perfect matching joining the two copies of each vertex by an edge. The graph G is called prism-hamiltonian if it has a hamiltonian prism. Jung showed that every 1-tough P_4 -free graph with at least three vertices is hamiltonian. We extend this to observe that for $k \ge 1$ a P_4 -free graph has a spanning k-walk (closed walk using each vertex at most k times) if and only if it is (1/k)-tough. As our main result, we show that for the class of P_4 -free graphs, the three properties of being prism-hamiltonian, having a spanning 2-walk, and being (1/2)-tough are all equivalent. (Received January 27, 2019)