1146-05-301Linyuan Lu*, Leconte College, 1523 Greene Street, Columbia, SC 29208-0001, and Zhiyu
Wang, SC 29208-0001. On the cover Ramsey number of Berge hypergraphs.

For a fixed set of positive integers R, we say \mathcal{H} is an R-uniform hypergraph, or R-graph, if the cardinality of each edge belongs to R. An R-graph \mathcal{H} is covering if every vertex pair of \mathcal{H} is contained in some hyperedge. For a graph G = (V, E), a hypergraph \mathcal{H} is called a *Berge-G*, denoted by BG, if there exists an injection $f : E(G) \to E(\mathcal{H})$ such that for every $e \in E(G), e \subseteq f(e)$. In this note, we define a new type of Ramsey number, namely the cover Ramsey number, denoted as $\hat{R}^R(BG_1, BG_2)$, as the smallest integer n_0 such that for every covering R-uniform hypergraph \mathcal{H} on $n \geq n_0$ vertices and every 2-edge-coloring (blue and red) of \mathcal{H} , there is either a blue Berge- G_1 or a red Berge- G_2 subhypergraph. We show that for every $k \geq 2$, there exists some c_k such that for any finite graphs G_1 and G_2 , $R(G_1, G_2) \leq \hat{R}^{[k]}(BG_1, BG_2) \leq$ $c_k \cdot R(G_1, G_2)^3$. Moreover, we show that for each positive integer d and k, there exists a constant c = c(d, k) such that if G is a graph on n vertices with maximum degree at most d, then $\hat{R}^{[k]}(BG, BG) \leq cn$. (Received January 25, 2019)