1146-05-220Allan Lo (s.a.lo@bham.ac.uk), School of Mathematics, University of Birmingham, Birmingham,
B15 2TT, United Kingdom, and Yi Zhao* (yzhao6@gsu.edu), Department of Mathematics and
Statistics, Georgia State University, Atlanta, GA 30303. Codegree Turán density of complete
r-uniform hypergraphs.

Let $r \ge 3$. Given an r-graph H, the minimum codegree $\delta_{r-1}(H)$ is the largest integer t such that every (r-1)-subset of V(H) is contained in at least t edges of H. Given an r-graph F, the codegree Turán density $\gamma(F)$ is the smallest $\gamma > 0$ such that every r-graph on n vertices with $\delta_{r-1}(H) \ge (\gamma + o(1))n$ contains F as a subhypergraph. Using results on the independence number of hypergraphs, we show that there are constants $c_1, c_2 > 0$ depending only on r such that

$$1 - c_2 \frac{\ln t}{t^{r-1}} \le \gamma(K_t^r) \le 1 - c_1 \frac{\ln t}{t^{r-1}},$$

where K_t^r is the complete *r*-graph on *t* vertices. This gives the best general bounds for $\gamma(K_t^r)$. (Received January 22, 2019)