1142-57-75 **Tarik Aougab***, Dept. of Mathematics, Brown University, 151 Thayer St, Providence, RI 02912, and **Shuchi Agrawal**, **Yassin Chandran**, **Marissa Loving**, **Rob Oakley**, **Roberta Shapiro** and **Sunny Yang**. Automorphisms of curve graph variants: bounded intersection.

For S a surface of finite type and genus at least 2 and $k \in \mathbb{N}$, let $\mathcal{C}_k(S)$ denote the graph whose vertices are (homotopy classes of) essential simple closed curves on S and whose edges represent pairs of such curves with geometric intersection at most k. When k = 0, this is the standard curve graph. We prove that $\operatorname{Aut}(\mathcal{C}_1(S)) \cong \operatorname{Aut}(\mathcal{C}_0(S))$, which when the genus is at least 3, is isomorphic to the extended mapping class group; this resolves a conjecture of Schaller from 2000. More generally, we prove the analogous result for $\mathcal{C}_k(S)$ so long as $|\chi(S)| > k + 600$. This represents joint work with Shuchi Agrawal, Yassin Chandran, Marissa Loving, Rob Oakley, Roberta Shapiro, and Sunny Yang. (Received August 28, 2018)