Máté Wierdl* (wierdlmate@gmail.com), Department of Mathematical Sciences, The University of Memphis, memphis, TN 38152. Simultaneous recurrence of stationary random walks. Preliminary report.
The talk is about a problem raised by M. Boshernitzan: Does a stationary random walk simultaneously revisit the origin infinitely often along two different step sizes?

Let us be precise: Let (Ω, Σ, P) be a probability space; $T: \Omega \rightarrow \Omega$ an invertible, ergodic m.p.t.; $F: \Omega \rightarrow \mathbb{Z}$ measurable. Define the random walk F^{n} defined by

$$
F^{n}(\omega)= \begin{cases}\sum_{0 \leq k<n} F\left(T^{k} \omega\right), & \text { for } n>0 \\ 0, & \text { for } n=0 \\ \sum_{n \leq k<0} F\left(T^{k} \omega\right), & \text { for } n<0\end{cases}
$$

It is well known that if $\int F=0$ then almost surely $F^{n}=0$ for infinitely many n.
Boshernitzan's question is if the random walks $\left(F^{n}\right)$ and $\left(F^{2 n}\right)$ almost surely return to the origin simultaneously, that is almsot surely, are there infinitely many n so that $F^{n}=F^{2 n}=0$?

Presently, we cannot answer the question, but we will examine some special cases, and present evidence that the answer to Boshernitzan's question is, in general, no.

We also show that simultaneous triple return to the origin is, in general, doesn't happen. The counterexample is provided in case ($T^{n} F$) is an iid sequence. (Received February 13, 2018)

