1138-47-254 A. Aleman, M. Hartz, John McCarthy and S. Richter* (srichter@utk.edu). Weak products of complete Pick spaces. Preliminary report.

Let \mathcal{H} be the Drury-Arveson or Dirichlet space of the unit ball of \mathbb{C}^d . The weak product $\mathcal{H} \odot \mathcal{H}$ of \mathcal{H} is the collection of all functions h that can be written as $h = \sum_{n=1}^{\infty} f_n g_n$, where $\sum_{n=1}^{\infty} ||f_n|| ||g_n|| < \infty$. We show that $\mathcal{H} \odot \mathcal{H}$ is contained in the Smirnov class of \mathcal{H} , i.e. every function in $\mathcal{H} \odot \mathcal{H}$ is a quotient of two multipliers of \mathcal{H} , where the function in the denominator can be chosen to be cyclic in \mathcal{H} . Furthermore, the maps $\eta : \mathcal{M} \to \mathcal{H} \cap \mathcal{M}$ and $\tau : \mathcal{N} \to Mult(\mathcal{H}) \cap \mathcal{N}$ establish 1-1 and onto correspondences between the multiplier invariant subspaces of $\mathcal{H} \odot \mathcal{H}$ and of \mathcal{H} , and the weak*closed ideals of the multipliers $Mult(\mathcal{H})$.

The results hold for many weighted Besov spaces \mathcal{H} in the unit ball of \mathbb{C}^d provided the reproducing kernel has the complete Pick property. (Received February 11, 2018)