1138-22-159Nicolas Ressayre* (ressayre@math.univ-lyon1.fr), Université Claude Bernard Lyon 1,
Institut Camille Jordan (ICJ), 43 boulevard du 11 novembre 1918, 69622 Villeurbanne, France. On
the tensor semigroup of affine Kac-Moody Lie algebras.

In this talk, we are interested in the decomposition of the tensor product of two representations of a symmetrizable Kac-Moody Lie algebra \mathfrak{g} . Let P_+ be the set of dominant integral weights. For $\lambda \in P_+$, $L(\lambda)$ denotes the irreducible, integrable, highest weight representation of \mathfrak{g} with highest weight λ . Consider the *tensor cone*

 $\Gamma(\mathfrak{g}) := \{ (\lambda_1, \lambda_2, \mu) \in P^3_+ | \exists N > 1 \quad L(N\mu) \subset L(N\lambda_1) \otimes L(N\lambda_2) \}.$

If \mathfrak{g} is finite dimensional, $\Gamma(\mathfrak{g})$ is a polyhedral convex cone described by Belkale-Kumar by an explicit finite list of inequalities. In general, $\Gamma(\mathfrak{g})$ is nor polyhedral, nor closed. We will describe the closure of $\Gamma(\mathfrak{g})$ by an explicit countable family of linear inequalities, when \mathfrak{g} is untwisted affine. This solves a Brown-Kumar's conjecture in this case. (Received February 08, 2018)