1138-11-6 Sebastian Troncoso* (sitronco@bsc.edu), Birmingham-Southern College, Mathematics Department, 900 Arkadelphia Road / Box 549032, Birmingham, AL 35254, and Jung Kyu Canci (jungkyu.canci@unibas.ch) and Solomon Vishkautsan (wishcow@gmail.com). Scarcity of finite orbits for rational functions over a number fields.

Let $\phi : \mathbb{P}_1 \to \mathbb{P}_1$ be a endomorphism of degree $d \ge 2$ defined over a number field K. Let S be the set of places of bad reduction for ϕ , including the archimedean places, and $PrePer(\phi, K)$ be the set of K-rational preperiodic points of ϕ .

The present paper presents two main results. The first result is a bound for $|PrePer(\phi, K)|$ in terms of the number of places of bad reduction |S| and the degree d of the endomorphism ϕ . This bound is *quadratic* in terms of d which is a significant improvement to all previous bound for $|PrePer(\phi, K)|$ in terms of d.

For the second result, if we assume that there is a K-rational periodic point of minimal period at least two then a bound for the cardinality of the set $PrePer(\phi, K)$ can be given which is *linear* in terms of d. (Received September 28, 2017)