Linyuan Lu* (lu@math.sc.edu), Irmo, SC 29208, and Zhiyu Wang (zhiyuw@math.sc.edu), Columbia, SC 29208. Color disjoint rainbow spanning trees of edge-colored graphs.
For any $t \geq 1$ and an edge-colored multigraph G, we show that G has t color-disjoint rainbow spanning trees if and only if for any partition P of $V(G)$, there are at least $t(|P|-1)$ distinct colors occurring in the crossing edges of P. Our theorem generalizes two previous results: Nash-Williams-Tutte theorem and Schrijver's theorem. As an application, we resolve a conjecture of Jahanbekam and West: $r(n, t)=\binom{n-2}{2}+t$ whenever $n \geq 2 t+2 \geq 6$. Here $r(n, t)$ is the maximum number of colors in an edge-coloring of K_{n} not having t edge-disjoint rainbow spanning trees. (Received February 11, 2018)

