1139-52-461

Karoly Bezdek* (kbezdek@ucalgary.ca), Dept. of Math. and Stats., University of Calgary, Calgary, Alberta T2N 1N4, Canada, and **Zsolt Langi**, Budapest University of Technology, Budapest, Hungary. *Minimizing the mean projections of finite* ρ-separable packings.

A packing of translates of a convex body in the *d*-dimensional Euclidean space \mathbb{E}^d is said to be totally separable if any two packing elements can be separated by a hyperplane of \mathbb{E}^d disjoint from the interior of every packing element. We call the packing \mathcal{P} of translates of a centrally symmetric convex body \mathbf{C} in \mathbb{E}^d a ρ -separable packing for given $\rho \geq 1$ if in every ball concentric to a packing element of \mathcal{P} having radius ρ (measured in the norm generated by \mathbf{C}) the corresponding sub-packing of \mathcal{P} is totally separable. The main result of this paper is the following theorem. Consider the convex hull \mathbf{Q} of *n* non-overlapping translates of an arbitrary centrally symmetric convex body \mathbf{C} forming a ρ -separable packing in \mathbb{E}^d with *n* being sufficiently large for given $\rho \geq 1$. If \mathbf{Q} has minimal mean *i*-dimensional projection for given *i* with $1 \leq i < d$, then the convex polytope \mathbf{P} which is the convex hull of the centres of the packing elements is approximately a *d*-dimensional ball. This extends a theorem of K. Böröczky Jr. (1994) from translative packings to ρ -separable translative packings for $\rho \geq 1$. (Received February 18, 2018)