1139-35-638

Jasun Gong^{*} (jgong7@fordham.edu), 441 E. Fordham Road, John Mulcahy Hall, Fordham University, Bronx, NY 10458, and Murat Akman, Jay Hineman, John Lewis and Andrew Vogel. A Brunn-Minkowski inequality for nonlinear capacity. Preliminary report.

Voget. If Drann-Minkowski inequality for nonlinear capacity. I reminiary repo

In this work we study associated capacities to degenerate elliptic PDEs in divergence form, i.e.

$$\operatorname{div}[\mathbf{A}\nabla u(x))] = 0$$

with suitable structural assumptions on $\mathbf{A} : \mathbb{R}^n \to \mathbb{R}^n$ that include the *p*-Laplacian $\mathbf{A}(\mathbf{v}) = \|\mathbf{v}\|^{p-2}\mathbf{v}$ as an example. Our main result is a Brunn-Minkowski inequality for such capacities:

$$\left[\operatorname{Cap}_{\mathcal{A}}(\lambda E_{1} + (1-\lambda)E_{2})\right]^{\frac{1}{(n-p)}} \geq \lambda \left[\operatorname{Cap}_{\mathcal{A}}(E_{1})\right]^{\frac{1}{(n-p)}} + (1-\lambda) \left[\operatorname{Cap}_{\mathcal{A}}(E_{2})\right]^{\frac{1}{(n-p)}}$$

where $1 and <math>0 < \lambda < 1$, and where E_1, E_2 are convex compact sets with positive \mathcal{A} -capacity. Moreover, if equality holds in the above inequality for some E_1 and E_2 , then with further regularity assumptions on \mathcal{A} , we show that E_1 and E_2 must be homothetic. (Received February 20, 2018)