D Kinzebulatov* (damir.kinzebulatov@mat.ulaval.ca), Quebec City, QC, Canada, and Yu. A Semenov (semenov.yu.a@gmail.com), Toronto, ON, Canada. W^{1,p} regularity of solutions to Kolmogorov equation with Gilbarg-Serrin matrix.

In \mathbb{R}^d , $d \geq 3$, consider the divergence and the non-divergence form operators

$$-\Delta - \nabla \cdot (a - I) \cdot \nabla + b \cdot \nabla, \tag{i}$$

$$-\Delta - (a - I) \cdot \nabla^2 + b \cdot \nabla, \tag{ii}$$

where the second order perturbations are given by the matrix

$$a - I = c|x|^{-2}x \otimes x, \quad c > -1.$$

The vector field $b: \mathbb{R}^d \to \mathbb{R}^d$ is form-bounded with the form-bound $\delta > 0$ (this includes a sub-critical class $[L^d + L^{\infty}]^d$, as well as vector fields having critical-order singularities). We characterize quantitative dependence on c and δ of the $L^q \to W^{1,qd/(d-2)}$ regularity of the resolvents of the operator realizations of (i), (ii) in L^q , $q \geq 2 \vee (d-2)$ as (minus) generators of positivity preserving L^{∞} contraction C_0 semigroups. (Received February 18, 2018)