(alvogel@syracuse.edu). Note on an Eigenvalue Problem. Preliminary report.
We consider solutions $v>0$ to certain nonlinear PDE of p Laplace type $(1<p<\infty)$ in the cone, $K(\alpha)=\{x=$ $\left.\left(x_{1}, \ldots, x_{n}\right): x_{1}>\alpha|x|\right\} \subset \mathcal{R}^{n}$ with continuous boundary value zero on $\partial K(\alpha)$ when $\alpha \in[-1,1)$. It turns out that v is of the form,

$$
v(x)=v(r, \theta)=r^{\lambda} f(\theta), \lambda>0
$$

provided either $\alpha \neq-1$ or $\alpha=-1$ and $p>n-1$. Here r, θ are spherical coordinates : $x_{1}=r \cos \theta, r=|x|, 0 \leq \theta \leq \pi$. During the first part of our talk we discuss what is known about the relationship between α and λ for a fixed $p>1$ and our attempts to solve a related eigenvalue problem for a nonlinear first order differential equation when $\alpha=-1$ and $p>n-1$. During the second part of the talk we sketch a finesse type argument which shows for $\alpha=-1$ and $p>n-1$ that $\lambda=1-(n-1) / p$. Time permitting we discuss applications of this result. (Received February 05, 2018)

