A singular perturbation of a polynomial $P(z) \in \mathbb{C}[z]$ is a rational function of the form $f(z)=P(z)+\frac{\epsilon}{(z-\beta)^{e}}$, where β is often taken to be a periodic and/or critical point for P. We investigate what one can say about the arithmetic complexity of the critical orbits of f compared to those of P. (Received February 18, 2018)

