1131-15-165

J. Maurice Rojas* (rojas@math.tamu.edu), TAMU 3368, College Station, TX 77843-3368, and Jens Forsgard (jensf@math.tamu.edu) and Mounir Nisse (mounir.nisse@gmail.com). Sharper Topological Bounds for Near-Circuit Exponential Sums.

Suppose \mathcal{A} is a subset of \mathbb{R}^n of cardinality n + 3 with non-defective (generalized) \mathcal{A} -discriminant. We show that an exponential sum g supported on \mathcal{A} has at most $O(n^2)$ connected components for its real zero set Z. (This implies an analogous bound for the positive zero sets of n-variate (n+3)-nomials.) The best previous bound (for just the number of non-compact connected components) was exponential in n. Our bound is based on a more refined look at the singularities of Z as g varies along certain monomial curves in coefficient space. (Received July 12, 2017)