Neranga Fernando* (w.fernando@northeastern.edu), Department of Mathematics, 567 Lake Hall, Northeastern University, Boston, MA 02115. Reversed Dickson polynomials of the $(k+1)$-th kind over finite fields, II.
Let p be an odd prime and $q=p^{e}$, where e is a positive integer. Let \mathbb{F}_{q} be the finite field with q elements. A polynomial $f \in \mathbb{F}_{q}[\mathrm{x}]$ is called a permutation polynomial of \mathbb{F}_{q} if the associated mapping $x \mapsto f(x)$ from \mathbb{F}_{q} to \mathbb{F}_{q} is a permutation of \mathbb{F}_{q}. For $a \in \mathbb{F}_{q}$, the n-th reversed Dickson polynomial of the $(k+1)$-th kind $D_{n, k}(a, x)$ is defined by

$$
D_{n, k}(a, x)=\sum_{i=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \frac{n-k i}{n-i}\binom{n-i}{i}(-x)^{i} a^{n-2 i}
$$

and $D_{0, k}(a, x)=2-k$. I am primarily interested in the question: When is $D_{n, k}(a, x)$ a permutation polynomial of \mathbb{F}_{q} when n is a sum of odd prime powers? It is known that to discuss the permutaion behaviour of $D_{n, k}(a, x)$, one only has to consider $a=1$. In this talk, I will explain the permutation behaviour of $D_{n, k}(1, x)$ when $n=p^{l_{1}}+3, n=p^{l_{1}}+p^{l_{2}}+p^{l_{3}}$, and $n=p^{l_{1}}+p^{l_{2}}+p^{l_{3}}+p^{l_{4}}$, where l_{1}, l_{2}, l_{3}, and l_{4} are non-negative integers. I will also explain a generalization to $n=p^{l_{1}}+p^{l_{2}}+\cdots+p^{l_{i}}$. Moreover, I will present some algebraic and arithmetic properties of the reversed Dickson polynomials of the $(k+1)$-th kind. (Received June 25, 2017)

