1131-05-41 Eric Swartz* (easwartz@wm.edu) and Alex Schaefer. Graphs that contain multiply transitive matchings.

Let Γ be a finite, undirected, connected, simple graph. We say that a matching \mathcal{M} is a *permutable m-matching* if \mathcal{M} contains *m* edges and the subgroup of Aut(Γ) that fixes the matching \mathcal{M} setwise allows the edges of \mathcal{M} to be permuted in any fashion. A matching \mathcal{M} is a 2-transitive matching if the setwise stabilizer of \mathcal{M} in Aut(Γ) can map any ordered pair of distinct edges of \mathcal{M} to any other ordered pair of distinct edges of \mathcal{M} . These definitions were motivated by a question of Zaslavsky regarding signed graphs. I will discuss constructions and characterizations of graphs with a permutable *m*-matching, as well as the classification of the graphs with a 2-transitive perfect matching. This is joint work with Alex Schaefer of Binghamton University. (Received June 19, 2017)