Let $s \geq t \geq 2$ be integers and H be a non-bipartite graph. It is easy to see that the maximum number of edges in an n-vertex graph with no induced copy of $K_{s, t}$ is $\binom{n}{2}$ because K_{n} has no induced $K_{s, t}$. However, if we ask for the maximum number of edges in an n-vertex graph with no copy of H and no induced copy of $K_{s, t}$, then we can no longer use the complete graph. A $(\chi(H)-1)$-partite Turán graph, which will be H-free, cannot be used for a lower bound either because a sufficiently large Turán graph will contain induced copies of $K_{s, t}$. We will present some bounds on the number of edges in an n-vertex graph with no copy of H and no induced copy of $K_{s, t}$, as well as some related results involving clique counts. This is joint work with Po-Shen Loh and Mike Tait. (Received August 26, 2016)

