1117-60-189Alexander E. Litvak, Anna Lytova* (anna.lytova@gmail.com), Konstantin Tikhomirov,
Nicole Tomczak-Jaegermann and Pierre Youssef. On invertibility of adjacency matrices of
random d-regular directed graphs.

We consider the set $\mathcal{D}_{n,d}$ of all *d*-regular directed graphs on *n* vertices. Let *G* be a graph chosen uniformly at random from $\mathcal{D}_{n,d}$ and M_n be its adjacency matrix. We show that M_n is invertible with probability at least $1 - C \ln^3 d/\sqrt{d}$ for $C \leq d \leq cn/\ln^2 n$, where c, C are positive absolute constants. To this end, we establish a few properties of *d*-regular directed graphs. One of them, a Littlewood–Offord type anti-concentration property, is of independent interest. Let *J* be a subset of vertices of *G* with $|J| \approx n/d$. Let δ_i be the indicator of the event that the vertex *i* is connected to *J* and define $\delta = (\delta_1, \delta_2, ..., \delta_n) \in \{0, 1\}^n$. Then for every $v \in \{0, 1\}^n$ the probability that $\delta = v$ is exponentially small. This property holds even if a part of the graph is "frozen." (Received January 13, 2016)