Alexander E. Litvak, Anna Lytova* (anna.lytova@gmail.com), Konstantin Tikhomirov, Nicole Tomczak-Jaegermann and Pierre Youssef. On invertibility of adjacency matrices of random d-regular directed graphs.

We consider the set $\mathcal{D}_{n, d}$ of all d-regular directed graphs on n vertices. Let G be a graph chosen uniformly at random from $\mathcal{D}_{n, d}$ and M_{n} be its adjacency matrix. We show that M_{n} is invertible with probability at least $1-C \ln ^{3} d / \sqrt{d}$ for $C \leq d \leq c n / \ln ^{2} n$, where c, C are positive absolute constants. To this end, we establish a few properties of d-regular directed graphs. One of them, a Littlewood-Offord type anti-concentration property, is of independent interest. Let J be a subset of vertices of G with $|J| \approx n / d$. Let δ_{i} be the indicator of the event that the vertex i is connected to J and define $\delta=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right) \in\{0,1\}^{n}$. Then for every $v \in\{0,1\}^{n}$ the probability that $\delta=v$ is exponentially small. This property holds even if a part of the graph is "frozen." (Received January 13, 2016)

