Carlos M. Nicolas* (cnicolas@ferrum.edu). A super-linear lower bound for the number of empty convex pentagons in planar point sets.
Let S be a set of points in general position in the plane. A subset P of S is called an empty convex pentagon of S if $|P|=5, P$ is in convex position and the convex hull of P does not contain any other points of S. Let $G(S)$ be the number of empty convex pentagons of S and $g(n)$ the minimum value of $G(S)$ over all sets S with n points in general position. In this talk I show that $n / g(n)$ goes to zero as n goes to infinity. This improves the current linear lower bound on $g(n)$. (Received January 18, 2016)

