convex bodies.
Let S^{2} be the unit sphere in \mathbb{R}^{3}. We consider the following question. Let f and g be two continuous functions on S^{2} such that for any unit vector $\xi \in S^{2}$ their restrictions onto any great circle $\xi^{\perp} \cap S^{2}$ satisfy $f\left(\varphi_{\xi}(u)\right)+a(\xi) \cdot u=g(u)$ for all $u \in \xi^{\perp} \cap S^{2}$, where the vector $a(\xi)$ is in ξ^{\perp} and φ_{ξ} is a rotation in ξ^{\perp}. Does it follow that $g(u)=f(u)+b \cdot u$ or $g(u)=f(-u)+b \cdot u$ for all $u \in S^{2}$ and some vector $b \in \mathbb{R}^{3}$?

Using a geometrical approach suggested by V.P.Golubyatnikov, we show that the answer is affirmative, provided f and g satisfy a certain smoothness condition and the map $\varphi: S^{2} \rightarrow S O(3), \varphi(\xi)=\varphi_{\xi}$ is continuous. In this case, f and g can be thought of as support functions of hedgehogs in \mathbb{R}^{3}. (Received January 12, 2016)

