Romanos Diogenes Malikiosis (malikios@math.tu-berlin.de), Sinai Robins*

 (sinai_robins@brown.edu) and Yichi Zhang (yczhang@ntu.edu.sg). Polyhedral Gauss sums, and polytopes with symmetry.We define certain natural finite sums of n 'th roots of unity that are associated to each convex integer polytope P, and which generalize the classical 1-dimensional Gauss sum $G(n)$ defined over $\mathbb{Z} / n \mathbb{Z}$, to integer polytopes. We call these finite exponential sums which $G_{P}(n)$. It is therefore natural to ask: for which convex integer polytopes do we get closed forms for $G_{P}(n)$, analogous to the 1-dim'l Gauss case? We consider the finite Weyl group W, generated by the reflections with respect to the coordinate hyperplanes, as well as all permutations of the coordinates, and we let G be the group generated by W as well as all integer vector translations.

We prove that if P multi-tiles \mathbb{R}^{d} under the action of the group G, then we have the closed form $G_{P}(n)=\operatorname{vol}(P) G(n)$.
Conversely, we also prove that if the closed form expression $G_{P}(n)=\operatorname{vol}(P) G(n)$ is true for $n \in\{1,2,3,4\}$, and P is a lattice tetrahedron in \mathbb{R}^{3} of (minimal) volume $1 / 6$, then there is an element $g \in G$ such that $g(P)$ is the fundamental tetrahedron with vertices $(0,0,0),(1,0,0),(1,1,0)$, and $(1,1,1)$. We will mention lots of open questions that arise naturally. (Received January 12, 2016)

