1117-05-520 Kevin G Milans* (milans@math.wvu.edu). Monotone paths in dense edge-ordered graphs.
In a graph whose edges are are totally ordered, a monotone path is a path that traverses edges in increasing order. Let $f(G)$ be the minimum, over all total orderings of $E(G)$, of the maximum length of a monotone path in G. In 1973, Graham and Kleitman proved that $f\left(K_{n}\right) \geq(\sqrt{4 n-3}-1) / 2$. The best known upper bound on $f\left(K_{n}\right)$ is due to Calderbank, Chung, and Sturtevant, who proved that $f\left(K_{n}\right) \leq\left(\frac{1}{2}+o(1)\right) n$ in 1984. We show that $f\left(K_{n}\right) \geq \Omega\left((n / \log n)^{2 / 3}\right)$. (Received January 19, 2016)

