1117-05-373 Hein van der Holst* (hvanderholst@gsu.edu), Atlanta, GA 30303, and Serguei Norine and Robin Thomas. Decomposing 2-cycles.
For a graph $G=(V, E)$, a 2-cycle $A=\left[a_{e, f}\right]$ is an $E \times E$ matrix such that $a_{e, f}=0$ if e and f have a common vertex, and each row and each column of A is a circulation on G. Examples of 2-cycles are 2-cycles coming from a pairs of disjoint cycles of G. Also on each subgraph of G that is a subdivision of K_{5} or $K_{3,3}$, there is a 2-cycle. It had been a conjecture that each 2 -cycle can be written as a sum of these types of 2 -cycles. This has recently been disproved by Barnett. In this talk, we give a finite list of types of 2 -cycles such that each 2 -cycle is a sum of 2 -cycles from this list. We also show that for Kuratowski-connected graphs, it suffices to have 2-cycles coming from pairs of disjoint cycles of G and 2-cycles on subgraphs of G that are subdivisions of K_{5} or $K_{3,3}$. (Received January 18, 2016)

