George E Andrews* (gea1@psu.edu), Department of Mathematics, The Pennsylvania State University, University Park, PA 16802. Implications of the Alladi-Schur Theorem. Preliminary report.
In 1926, I. Schur proved that if $A(n)$ equals the number of partitions of n into parts congruent to 1 or 5 modulo 6 , and $B(n)$ equals the number of partitions of n in which any two parts differ by at least 3 and multiples of 3 differ by more than 3 , then $A(n)=B(n)$. In the 1990's K. Alladi noted that if $C(n)$ equals the number of partitions of n into odd parts none repeated more than twice, then also $\mathrm{C}(\mathrm{n})=\mathrm{B}(\mathrm{n})$. Recently we proved the following refinement of the Alladi-Schur theorem: THEOREM. Let $C(m, n)$ denote the number of partitions among those enumerated by $C(n)$ that have exactly m parts. Let $B(m, n)$ denote the number of partitions among those enumerated by $B(n)$ where the number of odd parts plus twice the number of even parts equals m. Then $B(m, n)=C(m, n)$. In this talk, we support the contention that, of all the equivalent versions of Schur's original theorem, the Alladi-Schur theorem is the truly intrinsic version of the theorem. This will include a discussion of the implications for the study of partition identities of this nature. (Received January 18, 2016)

