1117-05-323Peter Dankelmann* (pdankelmann@uj.ac.za), Department of Pure and Applied Mathematics,
University of Johannesburg, PO Box 524, Johannesburg, 2006, South Africa, and Rocio M.
Casablanca. Wiener index and average eccentricity of the strong product of graphs.

The Wiener index W(G) of a connected graph G is the sum of the distances between all unordered pairs of vertices. The average eccentricity of G is the arithmetic mean of the eccentricities of the vertices of G, where the eccentricity of a vertex v is the maximum of the distances from v to all other vertices of G.

A well-known result states that among all connected graphs of given order the path is the unique graph that maximises the Wiener index. Casablanca, Favaron and Kouider generalised this result: Consider for an arbitrary but fixed connected graph H the Wiener index of the strong product $W(G \boxtimes H)$, where G is chosen from a collection of graphs. If G is chosen from all connected graphs of order n, then $W(G \boxtimes H)$ is maximised if G is a path.

We generalise this result by showing that if G is chosen from all connected graphs of given order and size, then $W(G \boxtimes H)$ is maximised if G is a so-called path-complete graph. We further show that if G is chosen from all 2r-connected graphs of given order, where $r \in \mathbb{N}$, then $W(G \boxtimes H)$ is maximised if G is the rth power of a cycle.

We give similar results on the average eccentricity of strong products. (Received January 17, 2016)